Compactness of Fractional Type Integral Operators on Spaces of Homogeneous Type

نویسندگان

چکیده

For a space (X, d, μ) of homogeneous type and fractional integral operator Kα defined on we find necessary sufficient condition the exponent q governing compactness from Lp(X) to Lq(X), where 1 ≤ p, < ∞ μ(X) ∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

A Good Λ Estimate for Multilinear Commutator of Fractional Integral on Spaces of Homogeneous Type

In this paper, a good λ estimate for the multilinear commutator associated to the fractional integral operator on the spaces of homogeneous type is obtained. Under this result, we get the(Lp(X),Lq(X)) -boundedness of the multilinear commutator. Mathematics subject classification (2010): 42B20, 42B25.

متن کامل

Hardy Classes, Integral Operators, and Duality on Spaces of Homogeneous Type

Function spaces play a significant role in harmonic analysis and partial differential equations. The integral operators that form a bridge between function spaces and partial differential equations are the Calderón-Zygmund operators. It is well known that Calderón-Zygmund operators are bounded on the Lebesgue space L(R) for 1 < p < ∞. It is also known that the Calderón-Zygmund operators are not...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2022

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-022-06202-2